Models of computer users that are learned on the basis of data can make use of two types of information: data about users in general and data about the current individual user. Fo...
Precision achieved by stochastic sampling algorithms for Bayesian networks typically deteriorates in face of extremely unlikely evidence. To address this problem, we propose the E...
Background: Identifying candidate genes in genetic networks is important for understanding regulation and biological function. Large gene expression datasets contain relevant info...
Anup Parikh, Eryong Huang, Christopher Dinh, Blaz ...
The variational Bayesian nonlinear blind source separation method introduced by Lappalainen and Honkela in 2000 is initialised with linear principal component analysis (PCA). Becau...
Antti Honkela, Stefan Harmeling, Leo Lundqvist, Ha...
Determining the relationship between structure (i.e. morphology) and function is a fundamental problem in brain research. In this paper we present a new framework based on Bayesia...
Hanchuan Peng, Edward Herskovits, Christos Davatzi...