Sciweavers

4255 search results - page 118 / 851
» On Learning Boolean Functions
Sort
View
ICML
1998
IEEE
15 years 10 months ago
Q2: Memory-Based Active Learning for Optimizing Noisy Continuous Functions
This paper introduces a new algorithm, Q2, foroptimizingthe expected output ofamultiinput noisy continuous function. Q2 is designed to need only a few experiments, it avoids stron...
Andrew W. Moore, Jeff G. Schneider, Justin A. Boya...
JMLR
2012
13 years 12 days ago
Structured Output Learning with High Order Loss Functions
Often when modeling structured domains, it is desirable to leverage information that is not naturally expressed as simply a label. Examples include knowledge about the evaluation ...
Daniel Tarlow, Richard S. Zemel
ECAI
2008
Springer
14 years 11 months ago
Learning Functional Object-Categories from a Relational Spatio-Temporal Representation
Abstract. We propose a framework that learns functional objectes from spatio-temporal data sets such as those abstracted from video. The data is represented as one activity graph t...
Muralikrishna Sridhar, Anthony G. Cohn, David C. H...
ECIR
2010
Springer
14 years 11 months ago
Learning to Select a Ranking Function
Abstract. Learning To Rank (LTR) techniques aim to learn an effective document ranking function by combining several document features. While the function learned may be uniformly ...
Jie Peng, Craig Macdonald, Iadh Ounis
NIPS
2008
14 years 11 months ago
Learning with Consistency between Inductive Functions and Kernels
Regularized Least Squares (RLS) algorithms have the ability to avoid over-fitting problems and to express solutions as kernel expansions. However, we observe that the current RLS ...
Haixuan Yang, Irwin King, Michael R. Lyu