Sciweavers

2712 search results - page 380 / 543
» On learning algorithm selection for classification
Sort
View
117
Voted
IJCAI
2007
15 years 2 months ago
A Theoretical Framework for Learning Bayesian Networks with Parameter Inequality Constraints
The task of learning models for many real-world problems requires incorporating domain knowledge into learning algorithms, to enable accurate learning from a realistic volume of t...
Radu Stefan Niculescu, Tom M. Mitchell, R. Bharat ...
132
Voted
JMLR
2010
162views more  JMLR 2010»
14 years 7 months ago
A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design
An exceedingly large number of scientific and engineering fields are confronted with the need for computer simulations to study complex, real world phenomena or solve challenging ...
Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom D...
105
Voted
JAIR
2010
131views more  JAIR 2010»
14 years 11 months ago
Automatic Induction of Bellman-Error Features for Probabilistic Planning
Domain-specific features are important in representing problem structure throughout machine learning and decision-theoretic planning. In planning, once state features are provide...
Jia-Hong Wu, Robert Givan
NLPRS
2001
Springer
15 years 5 months ago
A Bayesian Approach to Semi-Supervised Learning
Recent research in automated learning has focused on algorithms that learn from a combination of tagged and untagged data. Such algorithms can be referred to as semi-supervised in...
Rebecca F. Bruce
ICCV
2005
IEEE
16 years 2 months ago
A Supervised Learning Framework for Generic Object Detection in Images
In recent years Kernel Principal Component Analysis (Kernel PCA) has gained much attention because of its ability to capture nonlinear image features, which are particularly impor...
Saad Ali, Mubarak Shah