In this paper, a discriminative manifold learning method for face recognition is proposed which achieved the discriminative embedding the high dimensional face data into a low dim...
We simultaneously approach two tasks of nonlinear discriminant analysis and kernel selection problem by proposing a unified criterion, Fisher+Kernel Criterion. In addition, an eff...
Shu Yang, Shuicheng Yan, Dong Xu, Xiaoou Tang, Cha...
Linear techniques are widely used to reduce the dimension of image representation spaces in applications such as image indexing and object recognition. Optimal Component Analysis ...
Yiming Wu, Xiuwen Liu, Washington Mio, Kyle A. Gal...
Non-linear dimensionality reductionmethods are powerful techniques to deal with
high-dimensional datasets. However, they often are susceptible to local minima
and perform poorly ...
Andreas Geiger (Karlsruhe Institute of Technology)...
Abstract. In this paper a new method for analyzing the intrinsic dimensionality (ID) of low dimensional manifolds in high dimensional feature spaces is presented. The basic idea is...