Sciweavers

284 search results - page 20 / 57
» On the adaptable chromatic number of graphs
Sort
View
100
Voted
SIAMDM
2010
138views more  SIAMDM 2010»
14 years 11 months ago
The Last Fraction of a Fractional Conjecture
Reed conjectured that for every ε > 0 and every integer ∆, there exists g such that the fractional total chromatic number of every graph with maximum degree ∆ and girth at...
Frantisek Kardos, Daniel Král', Jean-S&eacu...
99
Voted
DM
2008
106views more  DM 2008»
15 years 16 days ago
Chromatic capacity and graph operations
The chromatic capacity cap(G) of a graph G is the largest k for which there exists a k-coloring of the edges of G such that, for every coloring of the vertices of G with the same ...
Jack Huizenga
95
Voted
JGT
2010
103views more  JGT 2010»
14 years 11 months ago
Proof of a conjecture on fractional Ramsey numbers
: Jacobson, Levin, and Scheinerman introduced the fractional Ramsey function rf (a1,a2, ...,ak) as an extension of the classical definition for Ramsey numbers. They determined an e...
Jason Brown, Richard Hoshino
DM
2010
78views more  DM 2010»
15 years 17 days ago
Injective colorings of sparse graphs
Let Mad(G) denote the maximum average degree (over all subgraphs) of G and let i(G) denote the injective chromatic number of G. We prove that if Mad(G) 5 2 , then i(G) + 1; sim...
Daniel W. Cranston, Seog-Jin Kim, Gexin Yu
CORR
2010
Springer
93views Education» more  CORR 2010»
15 years 17 days ago
Injective colorings of graphs with low average degree
Let mad(G) denote the maximum average degree (over all subgraphs) of G and let i(G) denote the injective chromatic number of G. We prove that if 4 and mad(G) < 14 5 , then i(G...
Daniel W. Cranston, Seog-Jin Kim, Gexin Yu