Recent research in decision theoretic planning has focussedon making the solution of Markov decision processes (MDPs) more feasible. We develop a family of algorithms for structur...
Craig Boutilier, Ronen I. Brafman, Christopher W. ...
Recent decision-theoric planning algorithms are able to find optimal solutions in large problems, using Factored Markov Decision Processes (fmdps). However, these algorithms need ...
Thomas Degris, Olivier Sigaud, Pierre-Henri Wuille...
This paper examines the notion of symmetry in Markov decision processes (MDPs). We define symmetry for an MDP and show how it can be exploited for more effective learning in singl...
We have presented an optimal on-chip buffer allocation and buffer insertion methodology which uses stochastic models of the architecture. This methodology uses finite buffer s...
Sankalp Kallakuri, Nattawut Thepayasuwan, Alex Dob...
We introduce Recursive Markov Decision Processes (RMDPs) and Recursive Simple Stochastic Games (RSSGs), which are classes of (finitely presented) countable-state MDPs and zero-su...