During the last years, the use of string kernels that compare documents has been shown to achieve good results on text classification problems. In this paper we introduce the appl...
We present a biologically motivated architecture for object recognition that is based on a hierarchical feature-detection model in combination with a memory architecture that impl...
We explore generic mechanisms to introduce structural hints into the method of Unsupervised Kernel Regression (UKR) in order to learn representations of data sequences in a semi-su...
Jan Steffen, Stefan Klanke, Sethu Vijayakumar, Hel...
High dimensional structured data such as text and images is often poorly understood and misrepresented in statistical modeling. The standard histogram representation suffers from ...
We present a framework to apply Volterra series to analyze multilayered perceptrons trained to estimate the posterior probabilities of phonemes in automatic speech recognition. Th...
Joel Pinto, Garimella S. V. S. Sivaram, Hynek Herm...