This paper proposes a novel approach for directly tuning the gaussian kernel matrix for one class learning. The popular gaussian kernel includes a free parameter, σ, that requires...
Paul F. Evangelista, Mark J. Embrechts, Boleslaw K...
In Kernel Fisher discriminant analysis (KFDA), we carry out Fisher linear discriminant analysis in a high dimensional feature space defined implicitly by a kernel. The performance...
Seung-Jean Kim, Alessandro Magnani, Stephen P. Boy...
This paper presents new and effective algorithms for learning kernels. In particular, as shown by our empirical results, these algorithms consistently outperform the so-called uni...
We study Mercer's theorem and feature maps for several positive definite kernels that are widely used in practice. The smoothing properties of these kernels will also be explo...
Many machine learning algorithms require the summation of Gaussian kernel functions, an expensive operation if implemented straightforwardly. Several methods have been proposed to...
Vlad I. Morariu, Balaji Vasan Srinivasan, Vikas C....