Kernel descriptors provide a unified way to generate rich visual feature sets by turning pixel attributes into patch-level features, and yield impressive results on many object rec...
Liefeng Bo, Kevin Lai, Xiaofeng Ren and Dieter Fox
In this paper we embed evolutionary computation into statistical learning theory. First, we outline the connection between large margin optimization and statistical learning and s...
Background: This paper introduces the notion of optimizing different norms in the dual problem of support vector machines with multiple kernels. The selection of norms yields diff...
Abstract. In this paper we elaborate on a kernel extension to tensorbased data analysis. The proposed ideas find applications in supervised learning problems where input data have ...
Marco Signoretto, Lieven De Lathauwer, Johan A. K....
We present a novel approach to learn a kernelbased regression function. It is based on the use of conical combinations of data-based parameterized kernels and on a new stochastic ...
Pierre Machart, Thomas Peel, Liva Ralaivola, Sandr...