Sciweavers

1236 search results - page 101 / 248
» Opposition-Based Reinforcement Learning
Sort
View
NIPS
2007
15 years 2 months ago
Reinforcement Learning in Continuous Action Spaces through Sequential Monte Carlo Methods
Learning in real-world domains often requires to deal with continuous state and action spaces. Although many solutions have been proposed to apply Reinforcement Learning algorithm...
Alessandro Lazaric, Marcello Restelli, Andrea Bona...
NIPS
2008
15 years 2 months ago
Optimization on a Budget: A Reinforcement Learning Approach
Many popular optimization algorithms, like the Levenberg-Marquardt algorithm (LMA), use heuristic-based "controllers" that modulate the behavior of the optimizer during ...
Paul Ruvolo, Ian R. Fasel, Javier R. Movellan
112
Voted
ICML
2002
IEEE
16 years 1 months ago
Algorithm-Directed Exploration for Model-Based Reinforcement Learning in Factored MDPs
One of the central challenges in reinforcement learning is to balance the exploration/exploitation tradeoff while scaling up to large problems. Although model-based reinforcement ...
Carlos Guestrin, Relu Patrascu, Dale Schuurmans
ATAL
2007
Springer
15 years 7 months ago
Model-based function approximation in reinforcement learning
Reinforcement learning promises a generic method for adapting agents to arbitrary tasks in arbitrary stochastic environments, but applying it to new real-world problems remains di...
Nicholas K. Jong, Peter Stone
116
Voted
ICML
2007
IEEE
16 years 1 months ago
Conditional random fields for multi-agent reinforcement learning
Conditional random fields (CRFs) are graphical models for modeling the probability of labels given the observations. They have traditionally been trained with using a set of obser...
Xinhua Zhang, Douglas Aberdeen, S. V. N. Vishwanat...