Decentralized reinforcement learning (DRL) has been applied to a number of distributed applications. However, one of the main challenges faced by DRL is its convergence. Previous ...
Chongjie Zhang, Victor R. Lesser, Sherief Abdallah
We address the problem of autonomously learning controllers for visioncapable mobile robots. We extend McCallum's (1995) Nearest-Sequence Memory algorithm to allow for genera...
Viktor Zhumatiy, Faustino J. Gomez, Marcus Hutter,...
— To address the difficulty of designing a controller for complex visual-servoing tasks, two learning-based uncalibrated approaches are introduced. The first method starts by b...
Amir Massoud Farahmand, Azad Shademan, Martin J&au...
Personalizing the product recommendation task is a major focus of research in the area of conversational recommender systems. Conversational case-based recommender systems help use...
— In this paper we address the reliability of policies derived by Reinforcement Learning on a limited amount of observations. This can be done in a principled manner by taking in...