Sciweavers

1236 search results - page 12 / 248
» Opposition-Based Reinforcement Learning
Sort
View
AROBOTS
1999
104views more  AROBOTS 1999»
14 years 11 months ago
Reinforcement Learning Soccer Teams with Incomplete World Models
We use reinforcement learning (RL) to compute strategies for multiagent soccer teams. RL may pro t signi cantly from world models (WMs) estimating state transition probabilities an...
Marco Wiering, Rafal Salustowicz, Jürgen Schm...
ML
2002
ACM
121views Machine Learning» more  ML 2002»
14 years 11 months ago
Near-Optimal Reinforcement Learning in Polynomial Time
We present new algorithms for reinforcement learning, and prove that they have polynomial bounds on the resources required to achieve near-optimal return in general Markov decisio...
Michael J. Kearns, Satinder P. Singh
ICONIP
2009
14 years 9 months ago
Tracking in Reinforcement Learning
Reinforcement learning induces non-stationarity at several levels. Adaptation to non-stationary environments is of course a desired feature of a fair RL algorithm. Yet, even if the...
Matthieu Geist, Olivier Pietquin, Gabriel Fricout
CORR
2012
Springer
196views Education» more  CORR 2012»
13 years 7 months ago
PAC-Bayesian Policy Evaluation for Reinforcement Learning
Bayesian priors offer a compact yet general means of incorporating domain knowledge into many learning tasks. The correctness of the Bayesian analysis and inference, however, lar...
Mahdi Milani Fard, Joelle Pineau, Csaba Szepesv&aa...
JAIR
2002
163views more  JAIR 2002»
14 years 11 months ago
Efficient Reinforcement Learning Using Recursive Least-Squares Methods
The recursive least-squares (RLS) algorithm is one of the most well-known algorithms used in adaptive filtering, system identification and adaptive control. Its popularity is main...
Xin Xu, Hangen He, Dewen Hu