Sciweavers

1236 search results - page 89 / 248
» Opposition-Based Reinforcement Learning
Sort
View
AAAI
1998
15 years 2 months ago
Tree Based Discretization for Continuous State Space Reinforcement Learning
Reinforcement learning is an effective technique for learning action policies in discrete stochastic environments, but its efficiency can decay exponentially with the size of the ...
William T. B. Uther, Manuela M. Veloso
NIPS
1993
15 years 2 months ago
Robust Reinforcement Learning in Motion Planning
While exploring to nd better solutions, an agent performing online reinforcement learning (RL) can perform worse than is acceptable. In some cases, exploration might have unsafe, ...
Satinder P. Singh, Andrew G. Barto, Roderic A. Gru...
94
Voted
ICML
2005
IEEE
16 years 1 months ago
Dynamic preferences in multi-criteria reinforcement learning
The current framework of reinforcement learning is based on maximizing the expected returns based on scalar rewards. But in many real world situations, tradeoffs must be made amon...
Sriraam Natarajan, Prasad Tadepalli
ICML
2004
IEEE
16 years 1 months ago
Adaptive cognitive orthotics: combining reinforcement learning and constraint-based temporal reasoning
Reminder systems support people with impaired prospective memory and/or executive function, by providing them with reminders of their functional daily activities. We integrate tem...
Matthew R. Rudary, Satinder P. Singh, Martha E. Po...
ICML
1998
IEEE
16 years 1 months ago
Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm
In this paper, we adopt general-sum stochastic games as a framework for multiagent reinforcement learning. Our work extends previous work by Littman on zero-sum stochastic games t...
Junling Hu, Michael P. Wellman