In this paper we propose a new approach for semi-supervised structured output learning. Our approach uses relaxed labeling on unlabeled data to deal with the combinatorial nature ...
Paramveer S. Dhillon, S. Sathiya Keerthi, Kedar Be...
For many multi-part object classes, the set of parts can vary not only in location but also in type. For example, player formations in American football involve various subsets of...
We propose regression modeling as an efficient approach for accurately predicting performance and power for various applications executing on any microprocessor configuration in a...
In this paper we present the Dynamic Grow-Shrink Inference-based Markov network learning algorithm (abbreviated DGSIMN), which improves on GSIMN, the state-ofthe-art algorithm for...
As animals interact with their environments, they must constantly update estimates about their states. Bayesian models combine prior probabilities, a dynamical model and sensory e...
Richard S. Zemel, Quentin J. M. Huys, Rama Nataraj...