Sciweavers

287 search results - page 12 / 58
» Optimal Solutions for Sparse Principal Component Analysis
Sort
View
IJCNN
2007
IEEE
15 years 3 months ago
Branching Principal Components: Elastic Graphs, Topological Grammars and Metro Maps
— To approximate complex data, we propose new type of low-dimensional “principal object”: principal cubic complex. This complex is a generalization of linear and nonlinear pr...
Alexander N. Gorban, Neil R. Sumner, Andrei Yu. Zi...
CVPR
2006
IEEE
15 years 11 months ago
Selecting Principal Components in a Two-Stage LDA Algorithm
Linear Discriminant Analysis (LDA) is a well-known and important tool in pattern recognition with potential applications in many areas of research. The most famous and used formul...
Aleix M. Martínez, Manli Zhu
CVPR
2011
IEEE
14 years 5 months ago
Accelerated Low-Rank Visual Recovery by Random Projection
Exact recovery from contaminated visual data plays an important role in various tasks. By assuming the observed data matrix as the addition of a low-rank matrix and a sparse matri...
Yadong Mu, Jian Dong, Xiaotong Yuan, Shuicheng Yan
NIPS
2007
14 years 11 months ago
Predicting Brain States from fMRI Data: Incremental Functional Principal Component Regression
We propose a method for reconstruction of human brain states directly from functional neuroimaging data. The method extends the traditional multivariate regression analysis of dis...
Sennay Ghebreab, Arnold W. M. Smeulders, Pieter W....
JMLR
2010
195views more  JMLR 2010»
14 years 8 months ago
Online Learning for Matrix Factorization and Sparse Coding
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statisti...
Julien Mairal, Francis Bach, Jean Ponce, Guillermo...