Sciweavers

287 search results - page 6 / 58
» Optimal Solutions for Sparse Principal Component Analysis
Sort
View
NIPS
2008
14 years 11 months ago
Supervised Exponential Family Principal Component Analysis via Convex Optimization
Recently, supervised dimensionality reduction has been gaining attention, owing to the realization that data labels are often available and indicate important underlying structure...
Yuhong Guo
110
Voted
ECML
2007
Springer
15 years 3 months ago
Principal Component Analysis for Large Scale Problems with Lots of Missing Values
Abstract. Principal component analysis (PCA) is a well-known classical data analysis technique. There are a number of algorithms for solving the problem, some scaling better than o...
Tapani Raiko, Alexander Ilin, Juha Karhunen
CIKM
2010
Springer
14 years 8 months ago
Decomposing background topics from keywords by principal component pursuit
Low-dimensional topic models have been proven very useful for modeling a large corpus of documents that share a relatively small number of topics. Dimensionality reduction tools s...
Kerui Min, Zhengdong Zhang, John Wright, Yi Ma
BMCBI
2010
144views more  BMCBI 2010»
14 years 9 months ago
Super-sparse principal component analyses for high-throughput genomic data
Background: Principal component analysis (PCA) has gained popularity as a method for the analysis of highdimensional genomic data. However, it is often difficult to interpret the ...
Donghwan Lee, Woojoo Lee, Youngjo Lee, Yudi Pawita...
BMCBI
2010
146views more  BMCBI 2010»
14 years 9 months ago
Nonnegative principal component analysis for mass spectral serum profiles and biomarker discovery
Background: As a novel cancer diagnostic paradigm, mass spectroscopic serum proteomic pattern diagnostics was reported superior to the conventional serologic cancer biomarkers. Ho...
Henry Han