In this paper, we address the pre-image problem in kernel principal component analysis (KPCA). The preimage problem finds a pattern as the pre-image of a feature vector defined in...
This paper introduces a multilinear principal component analysis (MPCA) framework for tensor object feature extraction. Objects of interest in many computer vision and pattern rec...
Haiping Lu, Konstantinos N. Plataniotis, Anastasio...
Principal component analysis (PCA) minimizes the sum of squared errors (L2-norm) and is sensitive to the presence of outliers. We propose a rotational invariant L1-norm PCA (R1-PC...
Chris H. Q. Ding, Ding Zhou, Xiaofeng He, Hongyuan...
We present a method for simultaneous dimension reduction and metastability analysis of high dimensional time series. The approach is based on the combination of hidden Markov model...
Illia Horenko, Johannes Schmidt-Ehrenberg, Christo...
In this paper, it is shown that Independent Component Analysis (ICA) of sparse signals (sparse ICA) can be seen as a cluster-wise Principal Component Analysis (PCA). Consequently,...
Massoud Babaie-Zadeh, Christian Jutten, Ali Mansou...