Sciweavers

287 search results - page 7 / 58
» Optimal Solutions for Sparse Principal Component Analysis
Sort
View
ICPR
2006
IEEE
15 years 3 months ago
Regularized Locality Preserving Learning of Pre-Image Problem in Kernel Principal Component Analysis
In this paper, we address the pre-image problem in kernel principal component analysis (KPCA). The preimage problem finds a pattern as the pre-image of a feature vector defined in...
Weishi Zheng, Jian-Huang Lai
TNN
2008
141views more  TNN 2008»
14 years 9 months ago
MPCA: Multilinear Principal Component Analysis of Tensor Objects
This paper introduces a multilinear principal component analysis (MPCA) framework for tensor object feature extraction. Objects of interest in many computer vision and pattern rec...
Haiping Lu, Konstantinos N. Plataniotis, Anastasio...
ICML
2006
IEEE
15 years 10 months ago
R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization
Principal component analysis (PCA) minimizes the sum of squared errors (L2-norm) and is sensitive to the presence of outliers. We propose a rotational invariant L1-norm PCA (R1-PC...
Chris H. Q. Ding, Ding Zhou, Xiaofeng He, Hongyuan...
COMPLIFE
2006
Springer
15 years 1 months ago
Set-Oriented Dimension Reduction: Localizing Principal Component Analysis Via Hidden Markov Models
We present a method for simultaneous dimension reduction and metastability analysis of high dimensional time series. The approach is based on the combination of hidden Markov model...
Illia Horenko, Johannes Schmidt-Ehrenberg, Christo...
IJON
2006
127views more  IJON 2006»
14 years 9 months ago
Sparse ICA via cluster-wise PCA
In this paper, it is shown that Independent Component Analysis (ICA) of sparse signals (sparse ICA) can be seen as a cluster-wise Principal Component Analysis (PCA). Consequently,...
Massoud Babaie-Zadeh, Christian Jutten, Ali Mansou...