Sciweavers

473 search results - page 5 / 95
» Optimal policy switching algorithms for reinforcement learni...
Sort
View
ICML
1998
IEEE
15 years 10 months ago
The MAXQ Method for Hierarchical Reinforcement Learning
This paper presents a new approach to hierarchical reinforcement learning based on the MAXQ decomposition of the value function. The MAXQ decomposition has both a procedural seman...
Thomas G. Dietterich
GECCO
2000
Springer
143views Optimization» more  GECCO 2000»
15 years 1 months ago
A Genetic Algorithm for Automatically Designing Modular Reinforcement Learning Agents
Reinforcement learning (RL) is one of the machine learning techniques and has been received much attention as a new self-adaptive controller for various systems. The RL agent auto...
Isao Ono, Tetsuo Nijo, Norihiko Ono
NIPS
2008
14 years 11 months ago
Regularized Policy Iteration
In this paper we consider approximate policy-iteration-based reinforcement learning algorithms. In order to implement a flexible function approximation scheme we propose the use o...
Amir Massoud Farahmand, Mohammad Ghavamzadeh, Csab...
NIPS
1998
14 years 11 months ago
Gradient Descent for General Reinforcement Learning
A simple learning rule is derived, the VAPS algorithm, which can be instantiated to generate a wide range of new reinforcementlearning algorithms. These algorithms solve a number ...
Leemon C. Baird III, Andrew W. Moore
ATAL
2004
Springer
15 years 3 months ago
Best-Response Multiagent Learning in Non-Stationary Environments
This paper investigates a relatively new direction in Multiagent Reinforcement Learning. Most multiagent learning techniques focus on Nash equilibria as elements of both the learn...
Michael Weinberg, Jeffrey S. Rosenschein