Sciweavers

473 search results - page 7 / 95
» Optimal policy switching algorithms for reinforcement learni...
Sort
View
77
Voted
NIPS
1993
14 years 11 months ago
Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach
This paper describes the Q-routing algorithm for packet routing, in which a reinforcement learning module is embedded into each node of a switching network. Only local communicati...
Justin A. Boyan, Michael L. Littman
AAMAS
2007
Springer
14 years 9 months ago
Parallel Reinforcement Learning with Linear Function Approximation
In this paper, we investigate the use of parallelization in reinforcement learning (RL), with the goal of learning optimal policies for single-agent RL problems more quickly by us...
Matthew Grounds, Daniel Kudenko
78
Voted
NIPS
2001
14 years 11 months ago
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning
Policy gradient methods for reinforcement learning avoid some of the undesirable properties of the value function approaches, such as policy degradation (Baxter and Bartlett, 2001...
Evan Greensmith, Peter L. Bartlett, Jonathan Baxte...
JMLR
2002
125views more  JMLR 2002»
14 years 9 months ago
Lyapunov Design for Safe Reinforcement Learning
Lyapunov design methods are used widely in control engineering to design controllers that achieve qualitative objectives, such as stabilizing a system or maintaining a system'...
Theodore J. Perkins, Andrew G. Barto
95
Voted
PKDD
2009
Springer
184views Data Mining» more  PKDD 2009»
15 years 2 months ago
Boosting Active Learning to Optimality: A Tractable Monte-Carlo, Billiard-Based Algorithm
Abstract. This paper focuses on Active Learning with a limited number of queries; in application domains such as Numerical Engineering, the size of the training set might be limite...
Philippe Rolet, Michèle Sebag, Olivier Teyt...