Sciweavers

76 search results - page 1 / 16
» Optimally Regularised Kernel Fisher Discriminant Analysis
Sort
View
94
Voted
ICPR
2004
IEEE
16 years 2 months ago
Optimally Regularised Kernel Fisher Discriminant Analysis
Mika et al. [3] introduce a non-linear formulation of Fisher's linear discriminant, based the now familiar "kernel trick", demonstrating state-of-the-art performanc...
Gavin C. Cawley, Kamel Saadi, Nicola L. C. Talbot
106
Voted
ICDM
2009
IEEE
174views Data Mining» more  ICDM 2009»
15 years 7 months ago
Non-sparse Multiple Kernel Learning for Fisher Discriminant Analysis
—We consider the problem of learning a linear combination of pre-specified kernel matrices in the Fisher discriminant analysis setting. Existing methods for such a task impose a...
Fei Yan, Josef Kittler, Krystian Mikolajczyk, Muha...
109
Voted
JMLR
2006
136views more  JMLR 2006»
15 years 1 months ago
Optimising Kernel Parameters and Regularisation Coefficients for Non-linear Discriminant Analysis
In this paper we consider a novel Bayesian interpretation of Fisher's discriminant analysis. We relate Rayleigh's coefficient to a noise model that minimises a cost base...
Tonatiuh Peña Centeno, Neil D. Lawrence
106
Voted
ICML
2006
IEEE
16 years 1 months ago
Optimal kernel selection in Kernel Fisher discriminant analysis
In Kernel Fisher discriminant analysis (KFDA), we carry out Fisher linear discriminant analysis in a high dimensional feature space defined implicitly by a kernel. The performance...
Seung-Jean Kim, Alessandro Magnani, Stephen P. Boy...
113
Voted
ICMLC
2010
Springer
14 years 11 months ago
Multiple kernel learning and feature space denoising
We review a multiple kernel learning (MKL) technique called p regularised multiple kernel Fisher discriminant analysis (MK-FDA), and investigate the effect of feature space denois...
Fei Yan, Josef Kittler, Krystian Mikolajczyk