Sciweavers

168 search results - page 8 / 34
» Optimism in Reinforcement Learning Based on Kullback-Leibler...
Sort
View
ICML
1998
IEEE
15 years 10 months ago
The MAXQ Method for Hierarchical Reinforcement Learning
This paper presents a new approach to hierarchical reinforcement learning based on the MAXQ decomposition of the value function. The MAXQ decomposition has both a procedural seman...
Thomas G. Dietterich
AAAI
2010
14 years 11 months ago
Reinforcement Learning via AIXI Approximation
This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian...
Joel Veness, Kee Siong Ng, Marcus Hutter, David Si...
63
Voted
FLAIRS
1998
14 years 10 months ago
Optimizing Production Manufacturing Using Reinforcement Learning
Manyindustrial processes involve makingparts with an assemblyof machines, where each machinecarries out an operation on a part, and the finished product requires a wholeseries of ...
Sridhar Mahadevan, Georgios Theocharous
ICML
2003
IEEE
15 years 10 months ago
Action Elimination and Stopping Conditions for Reinforcement Learning
We consider incorporating action elimination procedures in reinforcement learning algorithms. We suggest a framework that is based on learning an upper and a lower estimates of th...
Eyal Even-Dar, Shie Mannor, Yishay Mansour
ECML
2006
Springer
15 years 1 months ago
Scaling Model-Based Average-Reward Reinforcement Learning for Product Delivery
Reinforcement learning in real-world domains suffers from three curses of dimensionality: explosions in state and action spaces, and high stochasticity. We present approaches that ...
Scott Proper, Prasad Tadepalli