When training Support Vector Machine (SVM), selection of a training data set becomes an important issue, since the problem of overfitting exists with a large number of training da...
This paper presents a new method for the selection of the two hyperparameters of Least Squares Support Vector Machine (LS-SVM) approximators with Gaussian Kernels. The two hyperpar...
Amaury Lendasse, Yongnan Ji, Nima Reyhani, Michel ...
We present an algorithm based on convex optimization for constructing kernels for semi-supervised learning. The kernel matrices are derived from the spectral decomposition of grap...
Xiaojin Zhu, Jaz S. Kandola, Zoubin Ghahramani, Jo...
Although Support Vector Machines(SVM) succeed in classifying several image databases using image descriptors proposed in the literature, no single descriptor can be optimal for ge...
RankSVM (Herbrich et al, 2000; Joachims, 2002) is a pairwise method for designing ranking models. SVMLight is the only publicly available software for RankSVM. It is slow and, due ...