Reinforcement learning problems are commonly tackled with temporal difference methods, which use dynamic programming and statistical sampling to estimate the long-term value of ta...
One of the major difficulties when applying Multiobjective Evolutionary Algorithms (MOEA) to real world problems is the large number of objective function evaluations. Approximate...
A. K. M. Khaled Ahsan Talukder, Michael Kirley, Ra...
For many types of machine learning algorithms, one can compute the statistically optimal" way to select training data. In this paper, we review how optimal data selection tec...
David A. Cohn, Zoubin Ghahramani, Michael I. Jorda...
Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consistin...
Emad Gad, Amir F. Atiya, Samir I. Shaheen, Ayman E...
Input selection in the nonlinear function approximation is important and difficult problem. Neural networks provide good generalization in many cases, but their interpretability is...