Sciweavers

716 search results - page 55 / 144
» Optimizing Sorting with Machine Learning Algorithms
Sort
View
102
Voted
ICML
2007
IEEE
16 years 3 months ago
On one method of non-diagonal regularization in sparse Bayesian learning
In the paper we propose a new type of regularization procedure for training sparse Bayesian methods for classification. Transforming Hessian matrix of log-likelihood function to d...
Dmitry Kropotov, Dmitry Vetrov
108
Voted
ICML
2006
IEEE
16 years 3 months ago
A continuation method for semi-supervised SVMs
Semi-Supervised Support Vector Machines (S3 VMs) are an appealing method for using unlabeled data in classification: their objective function favors decision boundaries which do n...
Olivier Chapelle, Mingmin Chi, Alexander Zien
GECCO
2008
Springer
123views Optimization» more  GECCO 2008»
15 years 3 months ago
Hierarchical evolution of linear regressors
We propose an algorithm for function approximation that evolves a set of hierarchical piece-wise linear regressors. The algorithm, named HIRE-Lin, follows the iterative rule learn...
Francesc Teixidó-Navarro, Albert Orriols-Pu...
105
Voted
ICML
2004
IEEE
16 years 3 months ago
Surrogate maximization/minimization algorithms for AdaBoost and the logistic regression model
Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. There are...
Zhihua Zhang, James T. Kwok, Dit-Yan Yeung
ICML
2001
IEEE
16 years 3 months ago
Some Theoretical Aspects of Boosting in the Presence of Noisy Data
This is a survey of some theoretical results on boosting obtained from an analogous treatment of some regression and classi cation boosting algorithms. Some related papers include...
Wenxin Jiang