Sciweavers

716 search results - page 58 / 144
» Optimizing Sorting with Machine Learning Algorithms
Sort
View
ECML
2005
Springer
15 years 7 months ago
Active Learning for Probability Estimation Using Jensen-Shannon Divergence
Active selection of good training examples is an important approach to reducing data-collection costs in machine learning; however, most existing methods focus on maximizing classi...
Prem Melville, Stewart M. Yang, Maytal Saar-Tsecha...
127
Voted
ICML
1994
IEEE
15 years 5 months ago
Markov Games as a Framework for Multi-Agent Reinforcement Learning
In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function....
Michael L. Littman
125
Voted
ICML
2006
IEEE
16 years 3 months ago
An analytic solution to discrete Bayesian reinforcement learning
Reinforcement learning (RL) was originally proposed as a framework to allow agents to learn in an online fashion as they interact with their environment. Existing RL algorithms co...
Pascal Poupart, Nikos A. Vlassis, Jesse Hoey, Kevi...
111
Voted
ICML
2004
IEEE
16 years 3 months ago
A needle in a haystack: local one-class optimization
This paper addresses the problem of finding a small and coherent subset of points in a given data. This problem, sometimes referred to as one-class or set covering, requires to fi...
Koby Crammer, Gal Chechik
ECML
2001
Springer
15 years 6 months ago
Comparing the Bayes and Typicalness Frameworks
When correct priors are known, Bayesian algorithms give optimal decisions, and accurate confidence values for predictions can be obtained. If the prior is incorrect however, these...
Thomas Melluish, Craig Saunders, Ilia Nouretdinov,...