Active selection of good training examples is an important approach to reducing data-collection costs in machine learning; however, most existing methods focus on maximizing classi...
Prem Melville, Stewart M. Yang, Maytal Saar-Tsecha...
In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function....
Reinforcement learning (RL) was originally proposed as a framework to allow agents to learn in an online fashion as they interact with their environment. Existing RL algorithms co...
Pascal Poupart, Nikos A. Vlassis, Jesse Hoey, Kevi...
This paper addresses the problem of finding a small and coherent subset of points in a given data. This problem, sometimes referred to as one-class or set covering, requires to fi...
When correct priors are known, Bayesian algorithms give optimal decisions, and accurate confidence values for predictions can be obtained. If the prior is incorrect however, these...
Thomas Melluish, Craig Saunders, Ilia Nouretdinov,...