Most pattern discovery algorithms easily generate very large numbers of patterns, making the results impossible to understand and hard to use. Recently, the problem of instead sel...
Hannes Heikinheimo, Jilles Vreeken, Arno Siebes, H...
Remote data access from disparate sources across a widearea network such as the Internet is problematic due to the unpredictable nature of the communications medium and the lack o...
The success of tensor-based subspace learning depends heavily on reducing correlations along the column vectors of the mode-k flattened matrix. In this work, we study the problem ...
Shuicheng Yan, Dong Xu, Stephen Lin, Thomas S. Hua...
This paper presents an unsupervised learning algorithm that can derive the probabilistic dependence structure of parts of an object (a moving human body in our examples) automatic...
We study graph estimation and density estimation in high dimensions, using a family of density estimators based on forest structured undirected graphical models. For density estim...
Anupam Gupta, John D. Lafferty, Han Liu, Larry A. ...