Sciweavers

204 search results - page 5 / 41
» Packing vertices and edges in random regular graphs
Sort
View
COMBINATORICS
2007
88views more  COMBINATORICS 2007»
14 years 9 months ago
Maximum Matchings in Regular Graphs of High Girth
Let G = (V, E) be any d-regular graph with girth g on n vertices, for d ≥ 3. This note shows that G has a maximum matching which includes all but an exponentially small fraction...
Abraham D. Flaxman, Shlomo Hoory
77
Voted
STOC
2003
ACM
109views Algorithms» more  STOC 2003»
15 years 10 months ago
Generating random regular graphs
Random regular graphs play a central role in combinatorics and theoretical computer science. In this paper, we analyze a simple algorithm introduced by Steger and Wormald [10] and...
Jeong Han Kim, Van H. Vu
SIAMDM
2010
110views more  SIAMDM 2010»
14 years 4 months ago
Embedding Spanning Trees in Random Graphs
We prove that if T is a tree on n vertices with maximum degree and the edge probability p(n) satisfies: np C max{ log n, n } for some constant > 0, then with high probability...
Michael Krivelevich
CORR
2011
Springer
138views Education» more  CORR 2011»
14 years 4 months ago
On the resilience of Hamiltonicity and optimal packing of Hamilton cycles in random graphs
Let k = (k1, . . . , kn) be a sequence of n integers. For an increasing monotone graph property P we say that a base graph G = ([n], E) is k-resilient with respect to P if for eve...
Sonny Ben-Shimon, Michael Krivelevich, Benny Sudak...
ESA
2001
Springer
132views Algorithms» more  ESA 2001»
15 years 2 months ago
Greedy Algorithms for Minimisation Problems in Random Regular Graphs
In this paper we introduce a general strategy for approximating the solution to minimisation problems in random regular graphs. We describe how the approach can be applied to the m...
Michele Zito