Sciweavers

91 search results - page 1 / 19
» Percentile Optimization for Markov Decision Processes with P...
Sort
View
89
Voted
ICML
2007
IEEE
16 years 1 months ago
Percentile optimization in uncertain Markov decision processes with application to efficient exploration
Markov decision processes are an effective tool in modeling decision-making in uncertain dynamic environments. Since the parameters of these models are typically estimated from da...
Erick Delage, Shie Mannor
COLT
2007
Springer
15 years 6 months ago
Bounded Parameter Markov Decision Processes with Average Reward Criterion
Bounded parameter Markov Decision Processes (BMDPs) address the issue of dealing with uncertainty in the parameters of a Markov Decision Process (MDP). Unlike the case of an MDP, t...
Ambuj Tewari, Peter L. Bartlett
ECML
2005
Springer
15 years 5 months ago
Active Learning in Partially Observable Markov Decision Processes
This paper examines the problem of finding an optimal policy for a Partially Observable Markov Decision Process (POMDP) when the model is not known or is only poorly specified. W...
Robin Jaulmes, Joelle Pineau, Doina Precup
AIPS
2008
15 years 2 months ago
Bounded-Parameter Partially Observable Markov Decision Processes
The POMDP is considered as a powerful model for planning under uncertainty. However, it is usually impractical to employ a POMDP with exact parameters to model precisely the real-...
Yaodong Ni, Zhi-Qiang Liu