The paper is concerned with learning to rank, which is to construct a model or a function for ranking objects. Learning to rank is useful for document retrieval, collaborative fil...
Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, Han...
Inductive learning of first-order theory based on examples has serious bottleneck in the enormous hypothesis search space needed, making existing learning approaches perform poorl...
Lbr is a lazy semi-naive Bayesian classi er learning technique, designed to alleviate the attribute interdependence problem of naive Bayesian classi cation. To classify a test exa...
This paper introduces a new algorithm, Q2, foroptimizingthe expected output ofamultiinput noisy continuous function. Q2 is designed to need only a few experiments, it avoids stron...
Andrew W. Moore, Jeff G. Schneider, Justin A. Boya...