Sciweavers

83 search results - page 11 / 17
» Planning and Acting in Partially Observable Stochastic Domai...
Sort
View
ATAL
2006
Springer
15 years 1 months ago
Winning back the CUP for distributed POMDPs: planning over continuous belief spaces
Distributed Partially Observable Markov Decision Problems (Distributed POMDPs) are evolving as a popular approach for modeling multiagent systems, and many different algorithms ha...
Pradeep Varakantham, Ranjit Nair, Milind Tambe, Ma...
ECAI
2010
Springer
14 years 10 months ago
The Dynamics of Multi-Agent Reinforcement Learning
Abstract. Infinite-horizon multi-agent control processes with nondeterminism and partial state knowledge have particularly interesting properties with respect to adaptive control, ...
Luke Dickens, Krysia Broda, Alessandra Russo
ROBOCUP
2007
Springer
153views Robotics» more  ROBOCUP 2007»
15 years 3 months ago
Model-Based Reinforcement Learning in a Complex Domain
Reinforcement learning is a paradigm under which an agent seeks to improve its policy by making learning updates based on the experiences it gathers through interaction with the en...
Shivaram Kalyanakrishnan, Peter Stone, Yaxin Liu
AI
2007
Springer
14 years 9 months ago
Learning action models from plan examples using weighted MAX-SAT
AI planning requires the definition of action models using a formal action and plan description language, such as the standard Planning Domain Definition Language (PDDL), as inp...
Qiang Yang, Kangheng Wu, Yunfei Jiang
ATAL
2008
Springer
14 years 11 months ago
The permutable POMDP: fast solutions to POMDPs for preference elicitation
The ability for an agent to reason under uncertainty is crucial for many planning applications, since an agent rarely has access to complete, error-free information about its envi...
Finale Doshi, Nicholas Roy