Sciweavers

280 search results - page 31 / 56
» Planning for Markov Decision Processes with Sparse Stochasti...
Sort
View
AAAI
2010
14 years 11 months ago
PUMA: Planning Under Uncertainty with Macro-Actions
Planning in large, partially observable domains is challenging, especially when a long-horizon lookahead is necessary to obtain a good policy. Traditional POMDP planners that plan...
Ruijie He, Emma Brunskill, Nicholas Roy
PKDD
2010
Springer
164views Data Mining» more  PKDD 2010»
14 years 7 months ago
Efficient Planning in Large POMDPs through Policy Graph Based Factorized Approximations
Partially observable Markov decision processes (POMDPs) are widely used for planning under uncertainty. In many applications, the huge size of the POMDP state space makes straightf...
Joni Pajarinen, Jaakko Peltonen, Ari Hottinen, Mik...
CLIMA
2011
13 years 9 months ago
Verifying Team Formation Protocols with Probabilistic Model Checking
Multi-agent systems are an increasingly important software paradigm and in many of its applications agents cooperate to achieve a particular goal. This requires the design of effi...
Taolue Chen, Marta Z. Kwiatkowska, David Parker, A...
IJRR
2010
162views more  IJRR 2010»
14 years 8 months ago
Planning under Uncertainty for Robotic Tasks with Mixed Observability
Partially observable Markov decision processes (POMDPs) provide a principled, general framework for robot motion planning in uncertain and dynamic environments. They have been app...
Sylvie C. W. Ong, Shao Wei Png, David Hsu, Wee Sun...
ATAL
2008
Springer
14 years 12 months ago
The permutable POMDP: fast solutions to POMDPs for preference elicitation
The ability for an agent to reason under uncertainty is crucial for many planning applications, since an agent rarely has access to complete, error-free information about its envi...
Finale Doshi, Nicholas Roy