Sciweavers

200 search results - page 13 / 40
» Point-Based Policy Iteration
Sort
View
AAAI
2006
15 years 1 months ago
Improving Approximate Value Iteration Using Memories and Predictive State Representations
Planning in partially-observable dynamical systems is a challenging problem, and recent developments in point-based techniques such as Perseus significantly improve performance as...
Michael R. James, Ton Wessling, Nikos A. Vlassis
ICML
2006
IEEE
16 years 15 days ago
Fast direct policy evaluation using multiscale analysis of Markov diffusion processes
Policy evaluation is a critical step in the approximate solution of large Markov decision processes (MDPs), typically requiring O(|S|3 ) to directly solve the Bellman system of |S...
Mauro Maggioni, Sridhar Mahadevan
AAAI
2010
15 years 1 months ago
Multi-Agent Learning with Policy Prediction
Due to the non-stationary environment, learning in multi-agent systems is a challenging problem. This paper first introduces a new gradient-based learning algorithm, augmenting th...
Chongjie Zhang, Victor R. Lesser
NIPS
2000
15 years 1 months ago
APRICODD: Approximate Policy Construction Using Decision Diagrams
We propose a method of approximate dynamic programming for Markov decision processes (MDPs) using algebraic decision diagrams (ADDs). We produce near-optimal value functions and p...
Robert St-Aubin, Jesse Hoey, Craig Boutilier
NIPS
2004
15 years 1 months ago
VDCBPI: an Approximate Scalable Algorithm for Large POMDPs
Existing algorithms for discrete partially observable Markov decision processes can at best solve problems of a few thousand states due to two important sources of intractability:...
Pascal Poupart, Craig Boutilier