Sciweavers

30 search results - page 4 / 6
» Point-based value iteration: An anytime algorithm for POMDPs
Sort
View
AIPS
2008
14 years 11 months ago
Bounded-Parameter Partially Observable Markov Decision Processes
The POMDP is considered as a powerful model for planning under uncertainty. However, it is usually impractical to employ a POMDP with exact parameters to model precisely the real-...
Yaodong Ni, Zhi-Qiang Liu
ATAL
2010
Springer
14 years 10 months ago
Risk-sensitive planning in partially observable environments
Partially Observable Markov Decision Process (POMDP) is a popular framework for planning under uncertainty in partially observable domains. Yet, the POMDP model is riskneutral in ...
Janusz Marecki, Pradeep Varakantham
AAAI
2006
14 years 11 months ago
Incremental Least Squares Policy Iteration for POMDPs
We present a new algorithm, called incremental least squares policy iteration (ILSPI), for finding the infinite-horizon stationary policy for partially observable Markov decision ...
Hui Li, Xuejun Liao, Lawrence Carin
NIPS
2004
14 years 11 months ago
VDCBPI: an Approximate Scalable Algorithm for Large POMDPs
Existing algorithms for discrete partially observable Markov decision processes can at best solve problems of a few thousand states due to two important sources of intractability:...
Pascal Poupart, Craig Boutilier
UAI
2008
14 years 11 months ago
Sparse Stochastic Finite-State Controllers for POMDPs
Bounded policy iteration is an approach to solving infinitehorizon POMDPs that represents policies as stochastic finitestate controllers and iteratively improves a controller by a...
Eric A. Hansen