Learning general functional dependencies is one of the main goals in machine learning. Recent progress in kernel-based methods has focused on designing flexible and powerful input...
Ioannis Tsochantaridis, Thomas Hofmann, Thorsten J...
In this work, we developed classifiers to distinguish between four ovarian tumor types using Bayesian least squares support vector machines (LS-SVMs) and kernel logistic regression...
Ben Van Calster, Dirk Timmerman, Antonia C. Testa,...
A new class of Support Vector Machine (SVM) that is applicable to sequential-pattern recognition such as speech recognition is developed by incorporating an idea of non-linear tim...
: This paper analyzes the influence of different parameters of Support Vector Machine (SVM) on text categorization performance. The research is carried out on different text collec...
This paper describes results concerning the robustness and generalization capabilities of kernel methods in detecting coordinated distributed multiple attacks (CDMA) using network...
Srinivas Mukkamala, Krishna Yendrapalli, Ram B. Ba...