We propose Laplace max-margin Markov networks (LapM3 N), and a general class of Bayesian M3 N (BM3 N) of which the LapM3 N is a special case with sparse structural bias, for robus...
The label ranking problem consists of learning a model that maps instances to total orders over a finite set of predefined labels. This paper introduces new methods for label ra...
Abstract. The practice of medicine is becoming increasingly evidencebased and clinical practice guidelines (CPGs) are necessary for advancing evidence-based medicine (EBM). We hypo...
When correct priors are known, Bayesian algorithms give optimal decisions, and accurate confidence values for predictions can be obtained. If the prior is incorrect however, these...
Thomas Melluish, Craig Saunders, Ilia Nouretdinov,...
Background: A number of methods that use both protein structural and evolutionary information are available to predict the functional consequences of missense mutations. However, ...
Chris J. Needham, James R. Bradford, Andrew J. Bul...