Active learning (AL) is an increasingly popular strategy for mitigating the amount of labeled data required to train classifiers, thereby reducing annotator effort. We describe ...
Byron C. Wallace, Kevin Small, Carla E. Brodley, T...
Roboethics is a recently developed field of applied ethics which deals with the ethical aspects of technologies such as robots, ambient intelligence, direct neural interfaces and i...
Abstract— This paper proposes a simulation-based active policy learning algorithm for finite-horizon, partially-observed sequential decision processes. The algorithm is tested i...
Ruben Martinez-Cantin, Nando de Freitas, Arnaud Do...
— We present a new motion planning framework that explicitly considers uncertainty in robot motion to maximize the probability of avoiding collisions and successfully reaching a ...
Random Forests were introduced by Breiman for feature (variable) selection and improved predictions for decision tree models. The resulting model is often superior to AdaBoost and ...
Long Han, Mark J. Embrechts, Boleslaw K. Szymanski...