A multitask learning framework is developed for discriminative classification and regression where multiple large-margin linear classifiers are estimated for different predictio...
In many real world prediction problems the output is a structured object like a sequence or a tree or a graph. Such problems range from natural language processing to computationa...
Shirish Krishnaj Shevade, Balamurugan P., S. Sunda...
We consider the general problem of learning from both labeled and unlabeled data. Given a set of data points, only a few of them are labeled, and the remaining points are unlabele...
Fei Wang, Changshui Zhang, Helen C. Shen, Jingdong...
Privacy-preserving data mining (PPDM) is an important topic to both industry and academia. In general there are two approaches to tackling PPDM, one is statistics-based and the oth...
Patrick Sharkey, Hongwei Tian, Weining Zhang, Shou...
This paper proposes the use of empirical modeling techniques for building microarchitecture sensitive models for compiler optimizations. The models we build relate program perform...
Kapil Vaswani, Matthew J. Thazhuthaveetil, Y. N. S...