Sciweavers

502 search results - page 23 / 101
» Principal Component Analysis for Sparse High-Dimensional Dat...
Sort
View
CSDA
2008
80views more  CSDA 2008»
15 years 16 days ago
Variational Bayesian functional PCA
A Bayesian approach to analyze the modes of variation in a set of curves is suggested. It is based on a generative model thus allowing for noisy and sparse observations of curves....
Angelika van der Linde
161
Voted
BMCBI
2011
14 years 4 months ago
Study of large and highly stratified population datasets by combining iterative pruning principal component analysis and STRUCTU
Background: The ever increasing sizes of population genetic datasets pose great challenges for population structure analysis. The Tracy-Widom (TW) statistical test is widely used ...
Tulaya Limpiti, Apichart Intarapanich, Anunchai As...
ITCC
2005
IEEE
15 years 6 months ago
A Scalable Generative Topographic Mapping for Sparse Data Sequences
We propose a novel, computationally efficient generative topographic model for inferring low dimensional representations of high dimensional data sets, designed to exploit data s...
Ata Kabán
103
Voted
AAAI
2007
15 years 2 months ago
Isometric Projection
Recently the problem of dimensionality reduction has received a lot of interests in many fields of information processing. We consider the case where data is sampled from a low d...
Deng Cai, Xiaofei He, Jiawei Han
ISNN
2009
Springer
15 years 7 months ago
Nonlinear Component Analysis for Large-Scale Data Set Using Fixed-Point Algorithm
Abstract. Nonlinear component analysis is a popular nonlinear feature extraction method. It generally uses eigen-decomposition technique to extract the principal components. But th...
Weiya Shi, Yue-Fei Guo