Sciweavers

58 search results - page 1 / 12
» Principal Component Analysis with Contaminated Data: The Hig...
Sort
View
COLT
2010
Springer
13 years 3 months ago
Principal Component Analysis with Contaminated Data: The High Dimensional Case
We consider the dimensionality-reduction problem (finding a subspace approximation of observed data) for contaminated data in the high dimensional regime, where the number of obse...
Huan Xu, Constantine Caramanis, Shie Mannor
ICONIP
2007
13 years 7 months ago
Principal Component Analysis for Sparse High-Dimensional Data
Abstract. Principal component analysis (PCA) is a widely used technique for data analysis and dimensionality reduction. Eigenvalue decomposition is the standard algorithm for solvi...
Tapani Raiko, Alexander Ilin, Juha Karhunen
IDEAL
2005
Springer
13 years 11 months ago
Cluster Analysis of High-Dimensional Data: A Case Study
Abstract. Normal mixture models are often used to cluster continuous data. However, conventional approaches for fitting these models will have problems in producing nonsingular es...
Richard Bean, Geoffrey J. McLachlan
SGAI
2005
Springer
13 years 11 months ago
The Effect of Principal Component Analysis on Machine Learning Accuracy with High Dimensional Spectral Data
This paper presents the results of an investigation into the use of machine learning methods for the identification of narcotics from Raman spectra. The classification of spectr...
Tom Howley, Michael G. Madden, Marie-Louise O'Conn...
JMLR
2010
144views more  JMLR 2010»
13 years 9 days ago
Practical Approaches to Principal Component Analysis in the Presence of Missing Values
Principal component analysis (PCA) is a classical data analysis technique that finds linear transformations of data that retain the maximal amount of variance. We study a case whe...
Alexander Ilin, Tapani Raiko