Sciweavers

462 search results - page 13 / 93
» Probabilistic Principal Component Analysis for Metabolomic D...
Sort
View
103
Voted
JACM
2011
152views more  JACM 2011»
14 years 16 days ago
Robust principal component analysis?
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component i...
Emmanuel J. Candès, Xiaodong Li, Yi Ma, Joh...
ICRA
1998
IEEE
148views Robotics» more  ICRA 1998»
15 years 1 months ago
Position Estimation Using Principal Components of Range Data
1 sensors is to construct a structural description from sensor data and to match this description to a previously acquired model [Crowley 85]. An alternative is to project individu...
James L. Crowley, Frank Wallner, Bernt Schiele
AMCS
2008
146views Mathematics» more  AMCS 2008»
14 years 9 months ago
Fault Detection and Isolation with Robust Principal Component Analysis
Principal component analysis (PCA) is a powerful fault detection and isolation method. However, the classical PCA which is based on the estimation of the sample mean and covariance...
Yvon Tharrault, Gilles Mourot, José Ragot, ...
CVPR
2008
IEEE
15 years 11 months ago
Parameterized Kernel Principal Component Analysis: Theory and applications to supervised and unsupervised image alignment
Parameterized Appearance Models (PAMs) (e.g. eigentracking, active appearance models, morphable models) use Principal Component Analysis (PCA) to model the shape and appearance of...
Fernando De la Torre, Minh Hoai Nguyen
PR
2006
116views more  PR 2006»
14 years 9 months ago
Correspondence matching using kernel principal components analysis and label consistency constraints
This paper investigates spectral approaches to the problem of point pattern matching. We make two contributions. First, we consider rigid point-set alignment. Here we show how ker...
Hongfang Wang, Edwin R. Hancock