Sciweavers

462 search results - page 22 / 93
» Probabilistic Principal Component Analysis for Metabolomic D...
Sort
View
117
Voted
NIPS
2003
14 years 11 months ago
Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data
In this paper we introduce a new underlying probabilistic model for principal component analysis (PCA). Our formulation interprets PCA as a particular Gaussian process prior on a ...
Neil D. Lawrence
ECCV
2004
Springer
15 years 3 months ago
Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors
Diffusion tensor magnetic resonance imaging (DT-MRI) is emerging as an important tool in medical image analysis of the brain. However, relatively little work has been done on produ...
P. Thomas Fletcher, Sarang C. Joshi
NIPS
2008
14 years 11 months ago
Sparse probabilistic projections
We present a generative model for performing sparse probabilistic projections, which includes sparse principal component analysis and sparse canonical correlation analysis as spec...
Cédric Archambeau, Francis Bach
AIPR
2002
IEEE
15 years 2 months ago
ICA Mixture Model based Unsupervised Classification of Hyperspectral Imagery
Conventional remote sensing classification techniques that model the data in each class with a multivariate Gaussian distribution are inefficient, as this assumption is generally ...
Chintan A. Shah, Manoj K. Arora, Stefan A. Robila,...
74
Voted
BMVC
2000
14 years 11 months ago
Probabilistic PCA and ICA Subspace Mixture Models for Image Segmentation
High-dimensional data, such as images represented as points in the space spanned by their pixel values, can often be described in a significantly smaller number of dimensions than...
Dick de Ridder, Josef Kittler, Robert P. W. Duin