Sciweavers

458 search results - page 36 / 92
» Q-Decomposition for Reinforcement Learning Agents
Sort
View
JMLR
2006
153views more  JMLR 2006»
15 years 1 months ago
Collaborative Multiagent Reinforcement Learning by Payoff Propagation
In this article we describe a set of scalable techniques for learning the behavior of a group of agents in a collaborative multiagent setting. As a basis we use the framework of c...
Jelle R. Kok, Nikos A. Vlassis
MAGS
2010
81views more  MAGS 2010»
14 years 8 months ago
Task allocation learning in a multiagent environment: Application to the RoboCupRescue simulation
Coordinating agents in a complex environment is a hard problem, but it can become even harder when certain characteristics of the tasks, like the required number of agents, are un...
Sébastien Paquet, Brahim Chaib-draa, Patric...
AAAI
2008
15 years 4 months ago
Potential-based Shaping in Model-based Reinforcement Learning
Potential-based shaping was designed as a way of introducing background knowledge into model-free reinforcement-learning algorithms. By identifying states that are likely to have ...
John Asmuth, Michael L. Littman, Robert Zinkov
ICES
2003
Springer
125views Hardware» more  ICES 2003»
15 years 7 months ago
Evolving Reinforcement Learning-Like Abilities for Robots
Abstract. In [8] Yamauchi and Beer explored the abilities of continuous time recurrent neural networks (CTRNNs) to display reinforcementlearning like abilities. The investigated ta...
Jesper Blynel
AAAI
2011
14 years 2 months ago
Value Function Approximation in Reinforcement Learning Using the Fourier Basis
We describe the Fourier Basis, a linear value function approximation scheme based on the Fourier Series. We empirically evaluate its properties, and demonstrate that it performs w...
George Konidaris, Sarah Osentoski, Philip Thomas