Sciweavers

11 search results - page 1 / 3
» Rate-coded Restricted Boltzmann Machines for Face Recognitio...
Sort
View
111
Voted
NIPS
2000
15 years 1 months ago
Rate-coded Restricted Boltzmann Machines for Face Recognition
We describe a neurally-inspired, unsupervised learning algorithm that builds a non-linear generative model for pairs of face images from the same individual. Individuals are then ...
Yee Whye Teh, Geoffrey E. Hinton
107
Voted
ICML
2010
IEEE
15 years 1 months ago
Rectified Linear Units Improve Restricted Boltzmann Machines
Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all ...
Vinod Nair, Geoffrey E. Hinton
CVPR
2012
IEEE
13 years 2 months ago
Robust Boltzmann Machines for recognition and denoising
While Boltzmann Machines have been successful at unsupervised learning and density modeling of images and speech data, they can be very sensitive to noise in the data. In this pap...
Yichuan Tang, Ruslan Salakhutdinov, Geoffrey E. Hi...
97
Voted
ICASSP
2010
IEEE
15 years 17 days ago
Phone recognition using Restricted Boltzmann Machines
For decades, Hidden Markov Models (HMMs) have been the state-of-the-art technique for acoustic modeling despite their unrealistic independence assumptions and the very limited rep...
Abdel-rahman Mohamed, Geoffrey E. Hinton
121
Voted
CVPR
2009
IEEE
1390views Computer Vision» more  CVPR 2009»
16 years 7 months ago
Stacks of Convolutional Restricted Boltzmann Machines for Shift-Invariant Feature Learning
In this paper we present a method for learning classspecific features for recognition. Recently a greedy layerwise procedure was proposed to initialize weights of deep belief ne...
Mohammad Norouzi (Simon Fraser University), Mani R...