In this paper we present a new method of 3D non-negative tensor factorization (NTF) that is robust in the presence of noise and has many potential applications, including multi-way...
Andrzej Cichocki, Rafal Zdunek, Seungjin Choi, Rob...
Non-negative Matrix Factorization (NMF, [5]) and Probabilistic Latent Semantic Analysis (PLSA, [4]) have been successfully applied to a number of text analysis tasks such as docum...
The problem of missing data is ubiquitous in domains such as biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemometrics, computer...
Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda, Mo...
This paper aims at discovering community structure in rich media social networks, through analysis of time-varying, multi-relational data. Community structure represents the laten...
Yu-Ru Lin, Jimeng Sun, Paul Castro, Ravi B. Konuru...
A Bayesian ensemble learning method is introduced for unsupervised extraction of dynamic processes from noisy data. The data are assumed to be generated by an unknown nonlinear ma...