Learning in real-world domains often requires to deal with continuous state and action spaces. Although many solutions have been proposed to apply Reinforcement Learning algorithm...
Alessandro Lazaric, Marcello Restelli, Andrea Bona...
We use reinforcement learning (RL) to compute strategies for multiagent soccer teams. RL may pro t signi cantly from world models (WMs) estimating state transition probabilities an...
In this paper, we present a reinforcement learning approach for mapping natural language instructions to sequences of executable actions. We assume access to a reward function tha...
S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer,...
Decentralized reinforcement learning (DRL) has been applied to a number of distributed applications. However, one of the main challenges faced by DRL is its convergence. Previous ...
Chongjie Zhang, Victor R. Lesser, Sherief Abdallah
— We consider the problem of optimal control in continuous and partially observable environments when the parameters of the model are not known exactly. Partially Observable Mark...