Factored Reinforcement Learning (frl) is a new technique to solve Factored Markov Decision Problems (fmdps) when the structure of the problem is not known in advance. Like Anticipa...
Olivier Sigaud, Martin V. Butz, Olga Kozlova, Chri...
Conventional conversational recommender systems support interaction strategies that are hard-coded into the system in advance. In this context, Reinforcement Learning techniques h...
This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Reinforcement Learning algorithms, combining Case Based Reasoning (CBR) and ...
Reinaldo A. C. Bianchi, Raquel Ros, Ramon Ló...
This paper describes the use of machine learning to improve the performance of natural language question answering systems. We present a model for improving story comprehension th...
Extracting useful knowledge from large network datasets has become a fundamental challenge in many domains, from scientific literature to social networks and the web. We introduc...
Duen Horng Chau, Aniket Kittur, Jason I. Hong, Chr...