Sciweavers

125 search results - page 7 / 25
» Reinforcement Learning in Continuous Time and Space
Sort
View
ICML
2009
IEEE
15 years 10 months ago
Binary action search for learning continuous-action control policies
Reinforcement Learning methods for controlling stochastic processes typically assume a small and discrete action space. While continuous action spaces are quite common in real-wor...
Jason Pazis, Michail G. Lagoudakis
NIPS
2007
14 years 11 months ago
Online Linear Regression and Its Application to Model-Based Reinforcement Learning
We provide a provably efficient algorithm for learning Markov Decision Processes (MDPs) with continuous state and action spaces in the online setting. Specifically, we take a mo...
Alexander L. Strehl, Michael L. Littman
CORR
2006
Springer
101views Education» more  CORR 2006»
14 years 10 months ago
Metric State Space Reinforcement Learning for a Vision-Capable Mobile Robot
We address the problem of autonomously learning controllers for visioncapable mobile robots. We extend McCallum's (1995) Nearest-Sequence Memory algorithm to allow for genera...
Viktor Zhumatiy, Faustino J. Gomez, Marcus Hutter,...
ICML
2006
IEEE
15 years 10 months ago
PAC model-free reinforcement learning
For a Markov Decision Process with finite state (size S) and action spaces (size A per state), we propose a new algorithm--Delayed Q-Learning. We prove it is PAC, achieving near o...
Alexander L. Strehl, Lihong Li, Eric Wiewiora, Joh...
AIIDE
2006
14 years 11 months ago
The Self Organization of Context for Learning in MultiAgent Games
Reinforcement learning is an effective machine learning paradigm in domains represented by compact and discrete state-action spaces. In high-dimensional and continuous domains, ti...
Christopher D. White, Dave Brogan