In this paper, we adopt general-sum stochastic games as a framework for multiagent reinforcement learning. Our work extends previous work by Littman on zero-sum stochastic games t...
We consider the problem of finding optimal strategies in infinite extensive form games with incomplete information that are repeatedly played. This problem is still open in lite...
Alessandro Lazaric, Jose Enrique Munoz de Cote, Ni...
Reinforcement learning (RL) is a fundamental process by which organisms learn to achieve a goal from interactions with the environment. Using Artificial Life techniques we derive ...
Yael Niv, Daphna Joel, Isaac Meilijson, Eytan Rupp...
: In recent years, market forecasting by machine learning methods has been flourishing. Most existing works use a past market data set, because they assume that each trader’s in...
The primary advantage of using 3D-FPGA over 2D-FPGA is that the vertical stacking of active layers reduce the Manhattan distance between the components in 3D-FPGA than when placed...
R. Manimegalai, E. Siva Soumya, V. Muralidharan, B...