We present an efficient "sparse sampling" technique for approximating Bayes optimal decision making in reinforcement learning, addressing the well known exploration vers...
Tao Wang, Daniel J. Lizotte, Michael H. Bowling, D...
Compositional Q-Learning (CQ-L) (Singh 1992) is a modular approach to learning to performcomposite tasks made up of several elemental tasks by reinforcement learning. Skills acqui...
Predictive state representations (PSRs) are models that represent the state of a dynamical system as a set of predictions about future events. The existing work with PSRs focuses ...
Britton Wolfe, Michael R. James, Satinder P. Singh
We propose a new approach to reinforcement learning which combines least squares function approximation with policy iteration. Our method is model-free and completely off policy. ...
This paper discusses a novel distributed adaptive algorithm and representation used to construct populations of adaptive Web agents. These InfoSpiders browse networked information ...