Sciweavers

397 search results - page 19 / 80
» Reinforcement Learning with Hierarchies of Machines
Sort
View
ICML
2004
IEEE
15 years 10 months ago
Using relative novelty to identify useful temporal abstractions in reinforcement learning
lative Novelty to Identify Useful Temporal Abstractions in Reinforcement Learning ?Ozg?ur S?im?sek ozgur@cs.umass.edu Andrew G. Barto barto@cs.umass.edu Department of Computer Scie...
Özgür Simsek, Andrew G. Barto
ECML
2006
Springer
15 years 1 months ago
Scaling Model-Based Average-Reward Reinforcement Learning for Product Delivery
Reinforcement learning in real-world domains suffers from three curses of dimensionality: explosions in state and action spaces, and high stochasticity. We present approaches that ...
Scott Proper, Prasad Tadepalli
ICML
2004
IEEE
15 years 10 months ago
Apprenticeship learning via inverse reinforcement learning
We consider learning in a Markov decision process where we are not explicitly given a reward function, but where instead we can observe an expert demonstrating the task that we wa...
Pieter Abbeel, Andrew Y. Ng
95
Voted
ICML
2005
IEEE
15 years 10 months ago
Exploration and apprenticeship learning in reinforcement learning
We consider reinforcement learning in systems with unknown dynamics. Algorithms such as E3 (Kearns and Singh, 2002) learn near-optimal policies by using "exploration policies...
Pieter Abbeel, Andrew Y. Ng
ICML
1999
IEEE
15 years 10 months ago
Using Reinforcement Learning to Spider the Web Efficiently
Consider the task of exploring the Web in order to find pages of a particular kind or on a particular topic. This task arises in the construction of search engines and Web knowled...
Jason Rennie, Andrew McCallum